Infinite arithmetic series
In mathematics, an infinite arithmetic series is an infinite series whose terms are in an arithmetic progression. Examples are 1 + 1 + 1 + 1 + · · · and 1 + 2 + 3 + 4 + · · ·. The general form for an infinite arithmetic series is
If a = b = 0, then the sum of the series is 0. If either a or b is nonzero, then the series diverges and has no sum in the usual sense.
Zeta regularization
The zeta-regularized sum of an arithmetic series of the right form is a value of the associated Hurwitz zeta function,
Although zeta regularization sums 1 + 1 + 1 + 1 + · · · to ζR(0) = −1⁄2 and 1 + 2 + 3 + 4 + · · · to ζR(−1) = −1⁄12, where ζ is the Riemann zeta function, the above form is not in general equal to
References
- Brevik, I. and H. B. Nielsen (February 1990). "Casimir energy for a piecewise uniform string". Physical Review D 41 (4): 1185–1192. doi:10.1103/PhysRevD.41.1185.
- Elizalde, E. (May 1994). "Zeta-function regularization is uniquely defined and well". Journal of Physics A: Mathematical and General 27 (9): L299–L304. doi:10.1088/0305-4470/27/9/010. (arXiv preprint)
- Li, Xinzhou; Xin Shi; and Jianzu Zhang (July 1991). "Generalized Riemann ζ-function regularization and Casimir energy for a piecewise uniform string". Physical Review D 44 (2): 560–562. doi:10.1103/PhysRevD.44.560.
See also
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›